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Abstract. Networks are commonly observed structures in complex systems with interacting and interde-
pendent parts that self-organize. For nonlinearly growing networks, when the total number of connections
increases faster than the total number of nodes, the network is said to accelerate. We propose a systematic
model for the dynamics of growing networks represented by distribution kinetics equations. We define the
nodal-linkage distribution, construct a population dynamics equation based on the association-dissociation
process, and perform the moment calculations to describe the dynamics of such networks. For nondirec-
tional networks with finite numbers of nodes and connections, the moments are the total number of nodes,
the total number of connections, and the degree (the average number of connections per node), represented
by the average moment. Size independent rate coefficients yield an exponential network describing the net-
work without preferential attachment, and size dependent rate coefficients produce a power law network
with preferential attachment. The model quantitatively describes accelerating network growth data for a
supercomputer (Earth Simulator), for regulatory gene networks, and for the Internet.

PACS. 89.75.Fb Structures and organization in complex systems – 05.65.+b Self-organized systems –
87.23.Ge Dynamics of social systems

1 Introduction

A complex system can be defined as a system with many
interacting and interdependent parts having emergent self-
organization [1]. New technologies and rapidly changing
societies, as well as biological evolution, increase the need
for a better understanding of these complex systems and
their structure. Data for complex systems [2] often re-
veal network structure, consisting of many connections
among many nodes [1,3,4]. Among the models for network
simulation, the Erdos and Renyi model [5,6] generates
undirected random connection networks. The small-world
network model [7] is an interpolation between regular lat-
tice models and random graphs [8]. Compared to the ran-
dom graph model the small world network has a much
larger clustering coefficient [7], which is the probability
that two randomly chosen nodes have a connection with
each other. The Barabasi-Albert network model [9], a
preferential growth model producing a power law struc-
ture, clarified the time dependence of power law networks.
Generally, networks evolve with time [1,3,4,10], typically
growing unless they undergo breakage of connections or
removal of nodes. For growing networks, the number of
nodes and number of connections are typically increasing
with time [2,3,9,10]. As few networks show linear growth
with their size [11], the majority of networks grow non-
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linearly, with the total number of connections increasing
faster than the total number of nodes. Such networks are
called accelerating networks [3,12,13].

The present aim is to propose a different approach for
the dynamics of linear and nonlinear growing networks
based on distribution kinetics [14,15]. For a class of grow-
ing network models [2,12,16], where the addition of new
nodes leads to power law structure [9,17,18], the distribu-
tion follows a power law, p(ξ) ∼ ξ−λ. Examples of power
law networks [19] are communication networks, such as
the World Wide Web and the Internet [20,21], citation
networks in the scientific literature [22,23], collaboration
networks [24,25], and metabolic reaction networks [11].

The current model, allowing multiple connections be-
tween any two nodes, is more general than the connection-
limited networks, allowing only one connection between
any two nodes. An example of the model network is an
airline network where several flying routes exist from one
airport to another. For connection-limited networks, the
most effective structure is the saturated state, where all
nodes are connected with all other nodes [12]. Such sat-
urated structures, where a clustering coefficient is unity,
may not be realistic even for the connection-limited net-
works, because real-world complex systems are trade-offs
between cost and efficiency, and unlinked node pairs may
be present. For instance, if a computer is directly con-
nected to the main server, surfing the Internet will be more
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Fig. 1. Two types of networks: (A) random (exponential) and (B) scale-free (power law) networks.

than 100 times faster than the normal broadband high-
speed Internet connection. For billions of Internet users
and given the cost of direct connections, this would be
unrealistic; thus the Internet, a representative communi-
cation network, follows the second best effective structure,
the power law network.

2 Model

We begin with the general concept of frequency distribu-
tion of nodes and connections, in which nodes and connec-
tions are added and established for network growth, and
removed and eliminated for breakage [14]. To exemplify
fundamental ideas, we will show even simple models can
produce diverse behaviors. Connections (links or edges)
are binary interactions between nodes that are nondirec-
tional and of indeterminate length. For such connections,
the nodal-linkage distribution p(ξ, t)dξ is defined as the
number of nodes at time t with number of connections in
the interval ξ to ξ + dξ. Because ξ is a positive integer,
the distribution is discrete, but for a large number of con-
nections one can substitute the discrete distribution with
a continuous distribution (replacing summations for the
discrete distribution with integrals for a continuous distri-
bution). The distribution of the number of connections in
the interval ξ to ξ+dξ can be expressed as 1/2 ξp(ξ, t)dξ.
Since each connection is associated with two nodes in non-
directional networks, the factor 1/2 appears. This is simi-
lar to polymer molecular weight distributions [26], where
the number of macromolecules having mass in the range
(x, x + dx) is p(x)dx and the mass of macromolecules in
the same interval is xp(x)dx.

The moments of the nodal-linkage distribution are de-
fined as,

p(n)(t) =
∫

p(ξ, t)ξndξ (1)

where the integration limits are determined by the domain
of p(ξ, t). From the definition, the total number of nodes
and total number of connections are p(0)(t) and 1/2 p(1)(t),
respectively, and the average number of connections per
node, 1/2 pavg(t), where pavg(t) = p(1)(t)/p(0)(t). The
variance and polydispersity index in terms of the sec-
ond moment are defined as pvar = p(2)/p(0) − pavg2 and

ppd = p(2)p(0)/p(1)2, providing further information for the
character and shape of the distribution.

To estimate the maximum number of connections for
a connection-limited network, consider a simple saturated
network with four nodes (three connections each where
any two nodes have only one connection between them).
Three connections for the first node, two connections for
the second node, and one connection for the third node
can be counted without repeating, and the summation of
these gives the total number of connections. Therefore, the
maximum possible number of connections, 1/2p(1)(t), for
a connection-limited network expressed as an arithmetic
progression from 1 up to (p(0)(t)−1) is 1/2 p(0)(t)(p(0)(t)−
1) [3,13].

We will focus on the network growth for two clas-
sifications: exponential networks (single-scale), randomly
connected in the absence of preferential attachment, and
power law (scale-free) networks constructed by preferen-
tial attachment (Fig. 1). The distribution of exponential
networks, for instance, Gaussian, binomial, or Poisson dis-
tributed networks, is unimodal (peaked) with well-defined
moments. Therefore, statistical properties such as mean
and variance can be easily defined and measured. The
distribution of power law networks has a power law ex-
pression, p(ξ) ∼ ξ−λ, where λ is usually a positive con-
stant. The moments of such networks are not defined on
the interval (0, ∞), because they do not have an inherent
scaling factor. However, if the evolving power law network
has an expanding finite domain, the moment integral in
equation (1) can be defined within the domain. For that
reason, moments of the power law networks within a finite
domain are defined as,

p(n)(t) =
∫ ξm(t)

0

p(ξ, t)ξndξ (2)

where ξm(t) represents the maximum number of connec-
tions, generally a function of time.

Our aim is to develop a framework that determines
the evolution of the two types of network. We will ap-
proach the problem with knowledge from distribution ki-
netics based on population dynamics, which has proven a
productive approach to polymerization and depolymeriza-
tion [27], particulate fragmentation and aggregation ([26]),
and crystal growth and dissolution [28]. By this method,
we can obtain solutions for numerous interesting systems,
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and show the effect of the parameters that govern the net-
work evolution.

3 Distribution kinetics

We describe network structure based on the association-
disassociation process, written below as a reaction-like ex-
pression. Connections are added one at a time to available
nodes, with the possibility that connected nodes, or in-
deed entire networks, might coalesce by such connecting
processes. The addition or removal of connections can be
written as a reversible rate process,

P (ξ) + P (ξ′)
kg(ξ)−−−→←−−−
kd(ξ)

P (ξ + 1) + P (ξ′ + 1) (3)

where P (ξ) schematically represents a node with ξ connec-
tions. A connection can be formulated by the interaction
between two nodes. We propose the rate coefficients kg(ξ)
and kd(ξ) for addition (growth) and removal (dissocia-
tion), respectively, by adopting power expressions, which
are generally considered to depend on the number of con-
nections,

kg(ξ) = γξλ and kd(ξ) = κξν (4)

where the constants γ, κ, λ, and ν are positive definite.
The process of equation (3) is unchanged by replacing ξ−1
with ξ or ξ′−1 with ξ′. In addition to expressions for con-
nection formulation or removal, expressions for rates of
node generation or loss are also required in the population
dynamics equation. Constructing the governing equations
for networks is similar to polymer [27], and crystalliza-
tion [28] kinetics. For example, the loss of P (ξ) on the
left-hand side of equation (3) is the product between p(ξ, t)
and p(ξ′, t), however, if P (ξ′) is abundant, we can assume
that P (ξ) is the limiting reactant. Therefore, the loss of
P (ξ) is expressed as,

kg(ξ)p(ξ, t). (5)

Similarly, the removal of a connection between P (ξ) and
P (ξ′) is proportional to p(ξ, t). The node addition or
node removal rate with ξi connections can be expressed
as Ii(t)δ(ξ − ξi), or can be incorporated into boundary
conditions. Based on these preliminary concepts we write
the population dynamics equation for equation (3) with
generation and loss terms,

∂p(ξ, t)/∂t = γ[(ξ − 1)λp(ξ − 1, t)− ξλp(ξ, t)]
+ κ[(ξ + 1)νp(ξ + 1, t)− ξνp(ξ, t)] + Σi=0Ii(t)δ(ξ − ξi).

(6)

By substituting rate coefficients in equation (4), we ob-
tain equation (6), similar to a master equation with first-
order kinetics [29]. Similar rate equation approaches for
the network analysis were introduced previously [16,30].
The population dynamics equation for network growing

process is similar to how crystallization [28] or polymer-
ization [26] affords growth by monomer addition for clus-
ters or polymers. Because we will describe node insertion
using the boundary conditions, we set the source terms
to zero, Ii = 0. We expand the distribution in ξ ± 1 in a
series around ξ, as in other distribution kinetics applica-
tions [26,28], and obtain a Fokker-Planck equation from
equation (6),

∂p(ξ, t)/∂t = ∂[(kd(ξ) − kg(ξ))p(ξ, t)]/∂ξ

+ 1/2∂2[(kd(ξ) + kg(ξ))p(ξ, t)]/∂ξ2 + ... (7)

where we have omitted third- and higher-order terms.

4 Exponential networks: absence
of preferential attachment

We keep up to the second-order terms in equation (7),

∂p(ξ, t)/∂t = ∂[(kd(ξ) − kg(ξ))p(ξ, t)]/∂ξ

+ 1/2∂2[(kd(ξ) + kg(ξ))p(ξ, t)]/∂ξ2. (8)

A one-dimensional random walk and its expression as a
convective diffusion equation are similar to equations (6)
through (8), suggesting how a Gaussian distribution for
the exponential network is obtained when the rate coef-
ficients are constants [31,32], kg(ξ) = γ and kd(ξ) = κ.
For this case, connections are randomly established and
yield exponential networks. By substituting a “velocity”,
v = (γ − κ), and a “diffusivity”, D = (γ + κ)/2, into
equation (8), the convective diffusion equation can be ex-
pressed as,

∂p(ξ, t)/∂t = −v∂[p(ξ, t)]/∂ξ + D∂2[p(ξ, t)]/∂ξ2. (9)

In stochastic theory, equation (9) is also called the Fokker-
Planck or Kolmogorov forward equation, and diffusiv-
ity and velocity correspond to the constant infinitesimal
mean and variance [33]. By a Fourier transformation of
equation (9) and the initial condition, p(ξ, t = 0) =
p
(0)
o δ(ξ − ξo), which means p

(0)
o nodes with ξo connections

exist initially, the exact solution can be obtained. Two
additional boundary conditions are required to solve the
forward equation. The first condition is p(ξ → ∞, t) = 0,
which means no node can have an unlimited number
of connections (there should be a maximum number of
connections per node). Because ξ is a positive integer
(ξ ≥ 0) for the network systems, a typical second con-
dition, p(ξ → −∞, t) = 0, is not realistic. If the solution
peak, located at ξo initially, is far enough away from ξ = 0,
the boundary condition does not affect the peak. In con-
vective diffusion theory [32], if the Peclet number for this
system defined as NPe = vξo/D = 2(γ − κ)ξo/(γ + κ) is
much greater than 1, the boundary condition [34] can be
approximated by p(ξ → 0, t) = 0, which ensures that the
network excludes nodes without connection. As ξo, where
the initial distribution is positioned, becomes larger, the
Peclet number is larger.
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Fig. 2. Evolution of the Gaussian (A) and Poisson (B) distributed network growth based on the moment results in equa-

tions (11)–(13) (A) and (17)–(19) (B): p
(0)
o = 100, ξo = 4, and the growth rate k = γ − κ, increases in steps of 0.02 from 0.1 to

0.2 for (A), and p
(0)
o = 100 and γ increases in steps of 3 from 1 to 13 for (B).

The solution for the convective diffusion equation,
equation (9), can be approximated by a Gaussian distri-
bution for ξ and t, if NPe � 1,

p(ξ, t) = [p(0)
o /(4π/NPe)1/2] exp[−(ξ/ξo)2NPe/4]. (10)

By applying integration in equation (2), the moments of
equation (10) are readily found as

p(0)(t) = p(0)
o (11)

p(1)(t) = p(0)
o [(γ − κ)t + ξo]. (12)

The average moment and the variance are

pavg(t) = (γ − κ)t + ξo (13)
pvar(t) = (γ + κ)t. (14)

If the growth rate coefficient, kg(ξ) = γ, is greater than
the dissolution rate coefficient, kd(ξ) = κ, nodes are be-
ing connected, the average number of connections, cor-
responding to the degree, 1/2pavg(t), increases, and the
network grows. If γ < κ, the average moment of connec-
tions decreases and the network deteriorates by connection
removal. For either growth or breakage, the network vari-
ance increases according to equation (14). As described in
equations (11) and (13), the degree for this network with
fixed number of nodes does not change with network size
because the number of nodes is constant.

The discrete Poisson distribution for the exponential
network derives from more constrained conditions: irre-
versible network growth (kd = 0), lack of source terms
(Ii = 0), and constant rate coefficient (kg = γ). With
these restrictions, equation (6) can be written as,

∂p(ξ, t)/∂(γt) = −p(ξ, t) + p(ξ − 1, t) (15)

where only positive integers (ξ > 0) are considered.
Equation (15) is a first-order difference-differential equa-
tion similar (but not identical) to governing equations in
chain polymerization [27] and stirred-tank cascade model-
ing [35]. The initial and boundary conditions are p(ξ, t =
0) = p

(0)
o δ0ξ and p(ξ < 0, t) = 0; the initial condition is

expressed in terms of the Kronecker delta, representing

unconnected node insertion, and the boundary condition
ensures the variable ξ is positive. Equation (15) can be
solved by Laplace transformation and the solution is sim-
ilar to a Poisson distribution [27],

p(ξ, t) = p(0)
o e−γt(γt)ξ+1/(ξ + 1)!. (16)

The moments for the distribution by the calculation in
equation (2) are,

p(0)(t) = p(0)
o (1− e−γt) (17)

p(1)(t) = p(0)
o (γt− 1 + e−γt). (18)

The average moment, which has a long time limit, γt, and
the variance are,

pavg(t) = (γt− 1 + e−γt)/(1− e−γt) (19)

pvar(t) = γteγt(eγt − γt− 1)/(1− eγt)2. (20)

The variance also shows a linear time behavior (de-
gree∼ γt) for large values of time. Thus, similar to the
Poisson distribution, the average and variance of equa-
tion (16) asymptotically reach the same expressions at
long time.

Figure 2 shows how the degree of Gaussian and
Poisson distributed exponential networks grows with time
(Fig. 2A) and the number of nodes (Fig. 2B). With the ab-
sence of preferential attachment, the Gaussian distributed
network in Figure 2A exemplifies how the total number
of connections among a constant number of nodes in-
creases with time, and the Poisson distributed networks
in Figure 2B (log-log coordinates) demonstrates nonlinear
accelerating growth of degree with network size (the total
number of connections grows faster than the total num-
ber of nodes). As plotted in Figure 2B, if the growth rate,
k = γ−κ, increases, the degree with a constant number of
nodes increases. The diverging behavior of degree explains
that the model allows multiple connections between nodes.
The linear behavior on log-log coordinates (Fig. 2B) im-
plies that the degree is proportional to a power of network
size.
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Fig. 3. Evolution of moments of the power law distributed network (Eqs. (24)–(26)) with initial condition, p(ξ, t = 0) = 0 and

boundary condition, p(ξ = 1, t) = p
(0)
o et/τ . The growth rate k increases in steps of 0.01 from 0.11 to 0.14 for parameters λ = 1,

p
(0)
o = 100, ξm = 1000, τ = 10.

5 Power law networks: effect of preferential
attachment

Many complex systems have power law size distributions.
The well-known mechanism to produce power law net-
works is preferential attachment [9] where a new node in-
troduced into networks preferentially connects with highly
connected ones. To describe the evolution of power law dis-
tributed networks, we truncate equation (7) to first-order
with the power expression of the rate coefficients (Eq. (4),
with λ = ν �= 0).

∂p(ξ, t)/∂t)∂[Gp(ξ, t)]/∂ξ = 0 (21)

where G = (γ − κ)ξλ is the growth rate. This partial
differential equation, similar to a continuity equation, is
common to population balance modeling [36], and can
be solved by Laplace transformation. We examine two
different cases with different initial conditions. We first
consider the initial condition p(ξ, t = 0) = 0, which
means initially no nodes exist, and the boundary condi-
tion, p(ξ = 1, t) = p

(0)
o et/τ , which represents the number of

nodes with one connection increasing exponentially. The
distribution for this set of initial and boundary conditions
can be obtained by Laplace transformation as well as the
method of characteristics,

p(ξ, t) = p(0)
o ξ−λ exp[t/τ + (1− ξ1−λ)/kτ(1

− λ)]u[t− (ξ1−λ − 1)/k(1− λ)] (22)

where u(x) is the unit step function defined as u(x < 0) =
0 and u(x � 0) = 1. The moments of equation (22) can
be obtained by integration (Eq. (2)).

The analytical solution for general power λ is compli-
cated, and we will show the evolution and network size
dependence graphically. Here we list the simplest moment
results where node connection probability is linearly pro-
portional to node degree, λ = 1. For this linearly propor-
tional connection probability, the nth moment obtained
by integration within a finite domain is,

p(n)(t) = p(0)
o kτ [exp(t/τ)− exp(nkt)]/(1− nkτ). (23)

Thus the zeroth, first, and average moments are,

p(0)(t) = p(0)
o kτ [exp(t/τ)− 1] (24)

p(1)(t) = p(0)
o kτ [exp(kt)− exp(t/τ)]/(kτ − 1) (25)

and

pavg(t) = [exp(kt)− exp(t/τ)]/{(kτ − 1)[exp(t/τ)− 1]}.
(26)

As explained, the zeroth moment, p(0)(t), represents the
total number of nodes, the total number of connec-
tions can be represented by 1/2 p(1)(t), and the de-
gree is defined using the average moment, as degree =
1/2pavg(t) = 1/2p(1)(t)/p(0)(t). Clustering coefficient for
the connection-limited networks can be defined as C =
1/2p(1)(t)/[p(0)(t)(p(0)(t)− 1/2], which is a ratio between
the actual and maximum number of connections. Only
a particular network [11] shows linear growth, where the
number of connections is linearly proportional to network
size. However, many networks display accelerating nonlin-
ear growth, where the total number of connections grows
faster than the total number of nodes, for example, the
communication networks (the WWW and Internet), ci-
tation networks, and collaboration networks [20–25]. We
now demonstrate such nonlinear, accelerating network
growth showing evolution of a power law distribution.
Figure 3A shows the time dependence of power law net-
works with proposed initial and boundary conditions, and
Figure 3B demonstrates nonlinear accelerating growth of
the degree with network size.

We next consider the initial condition p(ξ, t = 0) =
p
(0)
o ξ−λ, where connections are initially distributed as a

power law, and the exponentially increasing boundary
condition, p(ξ = 1, t) = p

(0)
o et/τ . The network distribu-

tion for this set of initial and boundary conditions is,

p(ξ − t) = p(0)
o ξ−λ {1− {1− exp[t/τ + (1

−ξ1−λ)/kτ(1 − λ)]}u[t− (ξ1−λ − 1)/k(1− λ)]
}

. (27)

When λ = 1, the general nth moment obtained by inte-
gration is,

p(n)(τ) = p(0)
o [exp(nkt)− nkτ exp(t/τ)

+ ξn
m(nkτ − 1)]/[n(nkτ − 1)] (28)
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Fig. 4. The scaled degree versus total number of nodes for the model (Eqs. (24)–(26) with p
(0)
o = 100, ξm = 1000, and τ = 20).

The axes are normalized from 0 to 1 with values at t = 100. The lines are model predictions and symbols indicate data [12] for
(A) Earth simulator (λ = 2), (B) regulatory gene networks (λ = 2), and (C) the Internet in 1999 (λ = 2.2). The predictions
with k = 0.15 and 0.25 demonstrate that the model can describe real-world accelerating network growth. The predictions with
k = 0.1 (kτ/2 = 1) show the most effective network growth path for connection-limited networks.

and the zeroth, first, and average moments are,

p(0)(t) = p(0)
o { ln(ξm)− k[t + τ(1 − exp(t/τ))]} (29)

p(1)(t) = p(0)
o [exp(kt)− kτ exp(t/τ)

+ ξm(kτ − 1)]/(kτ − 1) (30)

and

pavg(t) = [exp(kt)− kτ exp(t/τ) + ξm(kτ − 1)]/{(kτ

− 1)[ln(ξm)− k{t + τ [1 − exp(t/τ)]}]}. (31)

If k and τ are large, equations (28)–(31) reduce to equa-
tions (23)–(26), and the degree shows nonlinear accelerat-
ing behavior similar to Figure 3.

As expressed in equations (23)–(31) and Figure 3, the
model for power law networks contains two parameters, k
and τ , which allow quantitative description of many non-
linearly growing systems: As k (growth rate) increases,
the network size and nonlinearity, the ratio between the
total number of connections and nodes, increases. As τ
(node addition intensity) increases the total number of
connections exceeds the maximum number of connections
of connection-limited networks, p(0)(t)(p(0)(t) − 1)/2, in-
dicating multiple connections between nodes.

It is also interesting that when τk/2 = 1, the num-
ber of nodes represented by the zeroth moments in
equations (24) and (29) is approximated as p(0)(t) ∼
exp[kt/2]. The number of connections expressed by the
first moments in equations (25) and (30) is written as
1/2p(1)(t) ∼ (exp[kt/2])2, and therefore the number of

connections increases quadratically with network size,
1/2p(1)(t) ∼ (p(0)(t))2. Because the degree is defined by
the average moment (degree= 1/2pavg(t) and pavg(t) =
p(1)(t)/p(0)(t)), this shows linear behavior with the total
number of nodes, thus, degree ∼ p(0)(t). The quadratic
increase of number of connections with number of nodes
was reported to apply for supercomputers and regulatory
gene networks [12].

A vector-parallel high-performance computer devel-
oped by ESRDC (the Earth Simulator Research and
Development Center)/NEC, the Earth Simulator, is
registered as the world’s fastest supercomputer with
35.61 TFlops (trillion operations per second) according
to Linpack benchmark test results. The Earth Simulator
consists of 640 supercomputers, one at each node, with 8
vector processors for a total of 5120 processors connected
by a high-speed network with 12.3 GBytes data transfer
speed. Recent research [12,37] indicates that more than
400000 connections are required to connect 640 nodes by
83000 wires.

For the gene regulatory network of single-celled
prokaryotic organisms, general arguments on the network
control indicate that regulatory gene number grows rela-
tively fast as genome size increases; the number of tran-
scriptional regulators scales quadratically with the total
number of genes. Recent studies [38,39] on the gene reg-
ulatory network reveal that the percentage of regulatory
genes increases from 2.5% to 9% as the network size grows
from 4000 to 8000 bacterial genes. The model predic-
tions are compared with the accelerating behaviors of the
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Earth Simulator and the gene regulatory network [12] in
Figure 4.

The Internet is an essential example of a growing net-
work with technological and economical importance. A
well-known property of the Internet is that the distri-
bution of connections follows a power law behavior with
power exponent 2.15–2.2 [15]. The Internet also shows a
nonlinear accelerating growth behavior.

For an accelerating network with n connections among
m nodes, for b > 0 the total number of connections is
increased more than bn if the number of nodes increases
bm. We have plotted this accelerating behavior in Figure 4
as the normalized average number of connections per node
versus the total number of nodes

Real-world complex systems such as the Earth Sim-
ulator, the Internet, bacteria, or business organizations
show nonlinear accelerating growth behavior [12], because
of connection and organization costs. As a test we com-
pare model results with data for a supercomputer (Earth
Simulator), for regulatory gene networks [12], and for the
Internet in 1999 [40]. As explained for the connection-
limited networks, the most connected network is the most
effective one, for example, when a new node introduced
into networks has connections with all other nodes. This
will appear as a straight line on a scaled plot of degree with
network size. Predicting network growth path by using the
model solution is straightforward and convenient as pic-
tured in the scaled plots, Figures 4A–4C with different k.
We normalized the axes, the degree and the number of
nodes in Figure 4 by using values at t = 100 (which is suf-
ficient time to see nonlinear accelerating behavior). When
the parameter k is 0.1, the straight line, which corresponds
to the most effective network for the connection-limited
network, was obtained, i.e., τk/2 = 1.0. The model predic-
tion for data in Figure 4 shows nonlinear growth of degree,
1/2pavg, with network size, p(0)(t), through quadratic in-
creases in the total number of connections, 1/2p(1)(t). The
model adequately describes data for accelerating network
growth of the Earth Simulator, regulatory gene networks
(k = 0.15), and the Internet in 1999 (k = 0.25). As in-
dicated in Figure 4, as k approaches to 0.1, which rep-
resents the most effective network, the network becomes
more efficient, and in this regard, we presume that the
Earth Simulator and the regulatory gene networks have
more effective structures than the Internet.

6 Conclusions

What kind of mechanism do growing networks follow?
How do they construct and maintain their exponential
or power law structures? To answer these questions, we
have suggested a model based on population balance dy-
namics (distribution kinetics). The approach shows how
continuous distributions can describe network dynamics
and how either exponential or power law networks can be
constructed. Our aim has been to introduce a generalized
model for growing networks.

For the distributions in population balance kinetics, we
have proposed a growing network model with and without

preferential attachment, i.e., power law and exponential
networks, respectively. The model with size-independent
rate coefficients, kg(ξ) = γ and kd(ξ) = κ, yields Gaussian
or Poisson distributed exponential networks. The model
with the size-dependent rate coefficients, kg(ξ) = γξλ and
kd(ξ) = κξν , produces power law networks, and the non-
linear network size dependence of the number of connec-
tions describes how such power law networks evolve. We
explored the nonlinear growth of power law degree distri-
bution with time and network size. Our model for power
law network evolution has two parameters: τ , which con-
trols node addition, and the key parameter, k, which is
the difference between pre-factors of the rate coefficient
(γ − κ) and manages network-growing intensity. For real-
world complex systems, k reflects changes of the internal
or external conditions of networks, such as the accumula-
tion of connection load [41,42], which increases connect-
ing and organization costs, or technological innovations,
which diminish the costs.

Moment results show the time dependence of the dis-
tribution, p(ξ, t), for either linearly or nonlinearly growing
networks. Power law expressions with unlimited ξ do not
have proper integrals, and thus their moments are inde-
terminate. But as we have demonstrated, truncated power
laws evolve to increasingly larger values of ξ, and thus
moment integrals can be defined for finite time. A general
moment equation was derived by the integration of the
moment definition in equation (2) when integer values of λ
and ν are identical, λ = ν. The moments, p(n)(t), pavg(t),
and pvar(t), have complicated expressions that can be de-
rived by computer algebra. We also derived time and net-
work size dependent behaviors of the model using moment
solutions, determined based on the initial and boundary
conditions.

The growing network model based on distribution dy-
namics can describe growing network systems and repre-
sent data. The degree distributions of the network model
for exponential and power law networks increase with time
and network size through nonlinear accelerating growth
(Figs. 2 and 3). The proposed model, allowing multiple
connections between any two nodes, is general compared
to the connection-limited networks, which allow only one
connection between two nodes. We have demonstrated
that the model is also able to describe accelerating non-
linear growth of networks by plotting degree and the total
number of connections with network size.

The aim of this paper was to present a model for accel-
erating network evolution by developing a framework for
the dynamics of linear and nonlinear growing networks.
We focused on accelerating networks [12] and how the
number of nodes and connections and the degree evolve
in time. The model in its present state treats only those
quantities that can be represented as moments of the dis-
tribution, p(ξ, t), and thus not quantities such as node
separation or clustering coefficient, which have been com-
puted via Monte Carlo simulations [43]. At present, no sin-
gle model quantitatively describes all possible phenomena
associated with networks. Population balance (nonequi-
librium distribution kinetics) modeling can incorporate
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additional qualities as added parameters and variables in
the distribution function, and this is the subject of con-
tinuing investigation.
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